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Chapter 1
DISCUSSION OF SIGNIFICANCE AND SCOPE
OF THE UNDERTAKEN STUDY

1.1 Introduction

Research and development in advanced composites technology and
design procedures has advanced to a point where these materials can
now meet the challenge of highly demanding aerospace, automobile and
other structural applications. Performance payoffs in the form of
weight savings, component integration and a five-fold maintenance re-
duction as compared to metal design have been demonstrated (Forsch
[1]) and contribute to the overall picture of an attractive marketable
product.

However, resin matrix composites have moduli and strength
properties which are viscoelastic or time dependent. As a result there
is a need for methods by which short term test results can be used to
predict long term results.

The current effort is part of a continuing cooperative NASA-Ames -
VPI&SU research program directed towards the development of an
accelerated strength and stiffness characterization procedure which
generates the design data and the confidence levels, needed to insure
structural integrity for any projected lifetime. This process is

greatly complicated by a number of environment exposure variables



such as temperature, moisture*, UV and space radiation, high vacuum
and many others. An example of a typical thermal profile for an air
carrier given by Ripley [2] is given in Fig. 1.1. Any attempt to
handle such variables by overdesign will penalize the economical
features mentioned above as a knockdown factor will seriously limit

the full weight reduction potential of advanced composites.

1.2 Previous Efforts

An accelerated characterization, which is schematically given in
Fig. 1.2, has been developed and documented by Brinson et al. [4-13].
A fair amount of experimental support has been accumulated, based on
elements of linear viscoelasticity by Yeow [5]. Nonlinear visco-
elasticity came into this picture when Griffith [7] potentially identi-
fied this behavior as the reason for a serious underprediction of
creep rupture data for [90/t60/90]2$ laminates. The prediction was
based on a linear incremental lamination theory developed by Yeow [6].
As a result, a study of nonlinear viscoelastic characterization pro-
cedures was performed by Griffith [7] which led towards a valid
graphical Time-Temperature-Stress Superposition (TTSSP) principle for
the generation of modulus master curves.

Dillard [9] developed a non-linear viscoelastic incremental
lamination theory and found reasonable correlation between his predic-

tions and experiments. Because of the lTimited experimental data

*It has been shown that moisture pickup is generally reversible.
When combined with thermal spikes, however, this phenomenon can create
irreversible damage as shown by Adamson [3].
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Fig. 1.2 Accelerated Characterization Method for
Laminated Composite Materials.




available from the work of Griffith, Dillard used a semiempirical non-
linear viscoelastic model due to Findley to represent lamina

compliances.

1.3 Objectives and Outline of the Present Study

The objective of the current study was to cast the graphical
TTSSP method into an analytical form. It was believed that the
analytical framework developed by Schapery in a series of publications
could be adapted for this purpose. A literature review on nonlinear
viscoelastic constitutive equations is given in Chapter 2, while the
thermodynamic basis and the derivation of the Schapery model are the
subjects of Chapter 3.

An effort to relate viscoelastic deformation and failure on an
energy basis is developed in Chapter 4. This allows an immediate trans-
fer of any modulus master curve into a strength master curve as
depicted in Fig. 1.2,

Chapter 5 concentrates solely on 934 neat resin properties and
on the discussion of obtained experimental results thereto.

Master curves for transverse and shear properties of T300/934
as obtained through the Schapery analysis are discussed in Chapter 6.

Results on creep rupture for [90]85 and [60]85 lamina, based on
the energy criterion (Chapter 4), together with a comparison of an
incremental lamination theory prediction with experimental results on
[90/:45/90]ZS are discussed in Chapter 7.

A general discussion and conclusions are given in Chapter 8.



Chapter 2

INELASTIC TIME-DEPENDENT MATERIAL BEHAYICOR

2.1 Introduction

The purpose of this chapter is to produce a brief literature
overview on research in nonlinear viscoelasticity. The maijority of

publications explain how to deal with magnitude nonlinearities, i.e.

they account for the stress dependence observed on creep compliance
versus time as illustrated in Fig. 2.1.
A much smaller number of articles also account for intermode

nonlinearity (nonlinear interaction between different components of the

stress tensor) and almost invariably use a single mechanical in-
variant, namely the octahedral stress. In this respect it should be
mentioned that data generated by Cole and Pipes [14] shown in Fig. 2.2
indicate the extent of stress interaction in off-axis unidirectional
boron-epoxy coupons. These experimental results show that inelastic
behavior is not a monotonic function of fiber orientation. Similar
behavior has been observed for graphite-polyimide off-axis coupons by
Pindera and Herakovich [15]. They indicate that the inclusion of
residual thermal stresses and axial stress interaction at the micro-
mechanics Tevel are necessary in order to predict the correct trends
in the shear response of off-axis specimens.

An almost never mentioned type of nonlinearity is interaction

nonlinearity, i.e. nonlinear interaction between events (i.e. load

application or release) occurring at different times.
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2.2 Representations of Constitutive Equations in Nonlinear

Viscoelasticity

2.2.1 Multiple Integral Representations

The multiple integral representation is a very appealing
theoretical concept, since it is not limited to a particular material
or class of materials. The Volterra-Frechet expansion for a one-

dimensional case is written as:

t t ot
€ = [-mD](t - r])dc(T]) + me-sz(t - Tyt - TZ)dc(Tl)dc(Tz)

+ ... (2.1)

The first integral of Eq. (2.1) describes the Tinear viscoelastic
behavior, defined by the Boltzmann theory and the second and higher

order integrals are representations of both magnitude nonlinearity and

interaction nonlinearity, the latter implying an interaction effect

between, e.g., the stress increments at times T and -
If a force is suddenly applied to a specimen, producing a constant
stress o, it follows from 2.1 that

D, (t)o + Dz(t,t)cz £ D

e (t,t,t)e + ... (2.2)

3
The functions Dk(t,t,...,t) can thus be determined from creep tests.
The number of stress levels must be equal to the number of kernels Jk.
Gradowczyk [16] showed, however, that the system of linear equa-
tions which serves to determine the unknown functions is il1-
conditioned and the procedure of finding the kernels D, is unstable.

Being unaware of Gradowczyk's work, this author attempted to use the




multiple integral representation for p.v.c. and had to give up the
attempts due to the extreme instability of the results obtained [19].

The extension of the Volterra-frechet expansion to the 3-
dimensional case has been given by Green, Rivlin and co-workers [17].
Even if we limit their expression to triple integrals (small non-
linearities) twelve kernels still must be determined by experiment.

An alternative of the Green-Rivlin approach has been formulated
by Pipkin and Ropers [18] and is often referred to as nonlinear super-

position theory (NLST) which can be written as

t . t ot
e(t) = ( D](t - 1,0(t))o(1)dr +f J 02(t - 11,0(11),t

- Tz,c(rz))é(r1)6(r2)dr] dTZ + ... (2.3)

It is clear that eq. 2.3 is nonlinear even on the first approximation.
Thus, the additivity of incremental stress effects in the Boltzmann
superposition sense is preserved.

Kinder and Sternstein [20] showed that difference in strains pre-
dicted by the two theories is in the transient portion if the material
exhibits fading memory. Thus,in a single creep test,the equation 2.3
reduces to

(t .
e(t) = ! D](t - 7,5(7))o(z)dx (2.4)

}
/-

which is the most general representation of nonlinear creep provided
the transient response from the step loadings has decayed. However,
whether multiple loading and/or unloading programs require additional

integrals to describe time interactions of the loading history remains




an open question.

2.2.2 Single Integral Representations

i) Modifications of the Boltzman Theory of Linear Heredity
Two schools of thought have been identified in the literature.
The first one states that it is, in principle, possible to map a set
of nonlinear isochronous stress-strain curves into a linear set, pro-

vided we nonlinearize the stress and strain measures as
sle(t)] = 0t - =) = [0 1 (2.5)

Here the equation is linear but only in the nonlinear stress and strain
measures » and :. This form has been used by Koltunov [21]. A simpli-

fied form of Eq. 2.5 have been proposed by Leaderman [22]

e(t) = ' D(t - 1) %T—»,[:(f)]dv. (2.6)

sLe(t)] = 1 D(t - =) d—;—dt (2.7)

The second school allows for a stress or pressure-deformable time
measure. Indeed, the pressure dependence of the mechanical response has
been predicted theoretically on the basis of the free volume approach
by Ferry and Stratton [24] who derived the pressure analog of the well-
known YLF equation in the form:

(B/2.303 f )(p - p_)
= — 0 (2.8)
p o/ K¢ = o - p)

log a

10




where ap is the ratio of the relaxation times at pressure p to the
relaxation times at pressure Py B is a constant assumed to be of the
order of unity, fo is the fractional free volume at the reference
pressure, and Kf is the isothermal compressibility of the free volume.

Beuche [25] and 0'Reilly [26] proposed the equation

log aj = Cp - p,) (2.9)

where C is a constant and other variables are as defined above.
Knauss and Emri [27] postulate a linear dependence of fractional
free volume, on the instantaneous values of temperature, T; water

concentration, C; and mechanical dilatation 4, i.e.
f=f +oaaT +yC + 50 (2.10)

where o is the coefficient of volume expansion, vy is the moisture co-
efficient of volume expansion and & is the coefficient of mechanical
volume expansion. By substitution of (2.10) in the Doolittle equation

[28]

_ B (1.1
10g a = - 77353 [?" ?ij (2.11)

they obtain the following very general temperature, moisture and pressure

dependent shift-factor

B B adT + yC + 690
fog 2 = - 7303, [}0 +aaT +4C + 59] (2.12)

Neither equation (2.8), (2.9) or (2.12) has so far been subject to

extensive mechanical testing on solid polymers.

11




ij) Single Integral Representations Based on Thermodynamics

In order not to obscure the main issue of a literature review,
we shall not attempt a full treatment of the thermodynamic foundations,
but rather concentrate on the hierarchy of different continuum thermo-
dynamic theories. This hierarchy, shown in Fig. 2.3, has been reviewed
in a well-documented survey paper by K. Hutter [29]. Figure 2.3 shows
that the main concepts which can be utilized to develop constitutive
equations for inelastic materials are the rational thermodynamics
approach and the state variable approach (also called irreversibie
thermodynamics). The latter will be discussed in detail in Chapter 3.
Coleman and Noll [30] applied functional analysis to continuum mechanics
in order to express current stress, free energy and entropy
as functionals of the thermokinematic history. Their analysis
continues to influence rational thermodynamics research up to this date.

The state variable approach includes certain internal variables
in order to represent the internal state of the material. Constitutive
equations which describe the evolution of the internal state are in-
cluded as part of the theory. Onsager [31] published the concept of
internal variables in thermodynamics. This formalism was used by
Biot [32] in the derivation of constitutive equations of linear visco-
elasticity. Ziegler [33] extended this work to include nonlinear
viscoelastic materials and his approach has been used by Schapery [34]
and Valanis [35] to develop specific theories. The extension to in-

clude viscoplastic materials was made by Perzyna [36].

12
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2.2.3 Mechanical (Rheological) Models

Elastic behavior is compared to that of a massless Hookean spring
and the viscous behavior to that of a Newtonian dashpot. The success-
ful description of the stress strain behavior depends on the proper
choice and arrangement of the elements or hypothetical rheological
units. The final hardware-system that describes the behavior of a
material system in the Tinear range can, at least in principle, be
extended into the nonlinear range by the introduction of nonlinear
springs and dashpots. An example is the nonlinearized generalized

Kelvin element whose mathematical equation for creep can be written

as,

%;—(1 - exp (-t/14)) (2.13)

ot
+
—
w
—
(@}
~
I ~12

[0}
€ = — fi(o) +
Eo 1 1

where fi(o) is a nonlinearizing function of stress. Bach [37] used
this form in his studies on wood. He separated the total creep strain
into instantaneous, delayed-elastic and flow components. The
instantaneous or glassy response was always independent of stress
(thus f1(o) = 1), but the delayed elastic and flow compliances were
independent of stress only within certain limits of stress, depending
on moisture content and temperature.

We will show (Chapter 3) that Schapery's thermodynamic model, at

least under certain circumstances, can be related to a spring-dashpot-

hardware system.

14




2.2.4 Power Laws

It can be shown that the use of discrete spring-dashpot models
will allow us to obtain an accurate representation of viscoelastic
phenomena over a large time scale provided we use a sufficient number
of elements —typically one per decade.

The idea behind the power law representation is to sacrifice
accuracy at any one time in order to obtain a reasonable representation
over the complete time scale between glassy (short term) behavior and
rubbery (long time) behavior. This is often called broad-band approxi-
mation. Landel and Fedors [38] gave a form for spectral repre-
sentation H(t) guided by their understanding of polymer mechanics
which may be written as,

T

n
H(z) = C [?"-J exp (- 1 /1) (2.14)

Clauser and Knauss [39] gave examples of this approximation of H(t)
which are shown in Fig. 2.4. These results lead to the following

broad-band approximation for the relaxation modulus:

(2.15)

The representation is seen to possess four arbitrary constants,
including the limiting moduli values. The exponent n gives the slope
of the relaxation curve (Fig. 2.5) through the transition region
between glassy and rubbery behavior and To? for isothermal conditions,

fixes the characteristic relaxation time.

15
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Recognizing that relaxation and retardation are basically
reciprocal, one could also postulate a modified power law for the
compliance spectrum, L(t), as

n '
L) = ¢ S exnlor/e,) (2.16)
0

However, the integration for the creep compliance does not give a

simple form and it is more direct to assume a reasonable expression as

De - Dg

DC(t) = Dg + — (2.17)
1+

where n may be the same exponent as in the relaxation modulus and ré
is chosen for the best fit of the data. A special case results when

t<<r6andC=De—Dg,

De(t) = Dy + ¢ [f—o] (2.18)

A slightly modified form can be written as

g(t) = 0 + C* (%}n (2.19)

where 16 = AU, C* = C/An, A is a dimensionless multiplication factor,
and U =1 is a time unit selected to accommodate data reduction (i.e.

1 sec, 1 min, 1 hr, etc.). The power law in this form (Eq. 2.19) is
often called the "Findley power law" and has been found to give an
accurate representation of creep behavior of an extremely broad range
of amorphous, crystaline, crosslinked glass and carbon-fiber reinforced

plastics and laminates. The equation has been verified mostly in

17



tensile tests, but in a few cases it has successfully described
behavior in compression and under combined tensile and shear stresses
as well.

Upon conducting a screening experiment on 934 neat resin (at room
temperature), we identified the exponent, n, in Eq. 2.19 as the most
sensitive indicator of experimental errors. In addition, n was shown
to be dependent on the duration of the creep test as shown in Fig. 2.6.
Thus any short time creep test will result in an underestimation of n
or in other words a stable evaluation of n is impossible as long as the
flow term (C*tn) is too small relative to the initial compliance Do‘
The problem is easily handled, by performing a small additional experi-
ment, which consists of recording the recovery strain after unloading.
Creep recovery is mathematically given by

e =ae[(1+ )" - ()M (2.20)

r
t - t] n . .
where A = T , A€ = o-C*t] , and t] is the time at unloading.

Eq. 2.20 can be very easily derived using the power law for creep to-
gether with the superposition principle. Fig. 2.7 shows that the n
value obtained from recovery data is nearly insensitive to the duration
of the recovery experiment.

The creep experiment was repeated on T300/934 carbon epoxy with
the load perpendicular to the fiber direction. The result plotted in
Fig. 2.6 is compared with the result obtained on the neat 934 resin
(Fig. 2.8) and shows that the composite n-value comes within 5% of

the resin value after 3000 min.

18
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An alternative power-law type approach was developed by the
Russian school, mainly under the influence of the ideas published by
Yu. N. Rabotnov [23]. His formulation was based on the viscoelastic
deformation of polymeric materials which can be described by an

integral equation of the Boltzmann-Volterra type

e(t) = & [o(t) +J K(t - s)o(s)ds] (2.21)

where o(t) and e(t) are the stresses and strains in a uniaxial stress
field, E is the instantaneous Young's modulus, and K(t) is the transient
compliance or kernel function. Young's modulus can be determined by

the basic quasistatic measurements, while the kernel must include the
smallest possible number of parameters that need to be determined
experimentally. To satisfy the last condition, Rabotnov approximated
the strain, e€(t), with a power law and proceeded to deduce the kernel
function K(t) which can be written as,

o 2 g tn(1+a)
K(t) = at nZO RGN (2.22)

In (2.22), », B8 and « are material parameters, T{(n+1)(1+a)] is the
gamma function of the argument (n+1)(1+a), where 1 + o > 0. The kernel
parameters can be determined graphically (when a full deformation curve
is obtained) as well as numerically [19].

Functions of the type 2.22 are classified as exponential functions
of fractional order. They behave as an Abel-type singularity for
instantaneous loading and 1ike an exponential for the succeeding period

of time. A fairly detailed algebra for these operators has been

21



developed by Rabotnov and his collaborators.
Equation (2.21) can be modified for the case of creep where o(t)
is constant and becomes,

t

e(t) = 22 [ +[ K(s)ds] (2.23)
0

For small t, the first term in (2.22) dominates, i.e.,

At

By substituting (2.24) into (2.23), we obtain:

A

(t) = 221 + g1+e (2.25)
€ T E r(2+a) :
This again reduces to the Findley equation (2.19)

D(t) = D + Sk

where C* = ?(T%HT and n =1 +a. It is clear again that Eq. 2.19 is

only able to describe a limited portion of the full deformation curve.
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Chapter 3
SINGLE INTEGRAL REPRESENTATIONS BASED
ON IRREVERSIBLE THERMODYNAMICS

3.1 Introduction

A single integral nonlinear viscoelastic constitutive equation
has been developed by Schapery in a series of publications [34,40-44].
This chapter reviews his thermodynamic development with a special view
to developing a better understanding of the nature of the four non-
linearizing parameters which appear as well as their physical origin.

The name irreversible thermodynamics is well established but
confusing, since it suggests geometric irreversibility. This is not
generally true because thermodynamic irreversibility relates to entropy
production while a deformation accompanied by a change in entropy can
be geometrically reversible as for example in rubber elasticity. Thus
a name like "process thermodynamics" or non-equilibrium thermodynamics
would be more related to the physics of a problem like viscoelastic
deformation.

The consistency of constitutive equations with the fundamental
theorems of thermodynamics has been discussed by Truesdell and Toupin
[45]. No restriction on constitutive equations is given by the first
and the third fundamental theorems. The second excludes processes
with negative entropy production and thus limits the field of constitu-
tive equations, but not to the extent desired. It was demonstrated
by Biot [46] that the more precise statements about the nature of the

second law, which were made by Onsager [47], are sufficient to treat
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problems in linear viscoelasticity.

3.2 Gibbs Free Energy Formulation of the Schapery Equations

This formulation is particularly useful, since it allows the
treatment of temperature and stress tensor components as independent

variables. The Gibbs free energy g is defined as

9=u-Ts-l—qum (3.1)

where u is the specific internal energy, T the absolute temperature,

s the specific entropy, o the density, 9, (m=1,2,...,k) a set of k
state variables consisting of observed variables (strains), and Qm
(m=1,2,...,k) is a set of k generalized forces defined by the virtual
work condition S, = Q; 8q;. Eq. (3.1) shows that free energy can be
accumulated by increasing internal energy by decreasing entropy or
through a potential energy loss of the external loading.

A mathematical expression for the strength of the entropy source
as a result of "irreversibility" has to be derived first. We assume
that the classical concept of entropy is extendable into non-
equilibrium situations. This leads to the following result which is

called the fundamental equation of the system
sp = sI(u,qi) (i =1,2,...,n) (3.2)

The index I, identifies the system under study. The state variables
s (i = k+1,...,n) represent internal degrees of freedom.* These will

allow us to describe micro-structural rearrangements related to

*The number n of independent thermodynamic variables depends on
the nature of the system.
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straightening and relative sTiding of long chain molecules. These
variables are thus eventually observable, but certainly not control-
lable. For this reason Qi (i = k+1,...,n) = 0 since any force
associated with an internal degree of freedom would provide us with a
means to control this internal coordinate. The entropy-increment

dsI created by a change in du and n variations of dqi is measured by

the total derivative of the fundamental equation, i.e.

I’Zl 351
ds, = |[=—1| du + L dq. (3.3)
o g, i=1 {*iju,q;

where q% means all coordinates are held constant except q; - The incre-

ment du is controlled by the first law of thermodynamics through
S
du =dh + § » Qi dqi (3.4)

Thus according to (3.4) any increment in internal energy is produced

by an infinitesimal amount of heat (dh) crossing the boundary and/or

an infinitesimal amount of mechanical work p-] Qi dqi done on the system.
The incremental process is reversible, when dqi = 0. Then,

du = dh and according to the second law,
dh = TdsI (3.5)
By substituting (3.5) into (3.3), we obtain

]
L =1 (3.6)
[au ]qi T

In other words, the temperature measures the sensitivity of the

internal energy for entropy changes. Thus (3.3), written now under
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the restrictions of a reversible process becomes

n BSI

TdsI =du+T ) a0 dq; (3.7)

L q. , i
i=] 1)U,qy4

Since the partial derivative in the second term is an operation on a

state function St» it defines a state function QiR,

1 1

3s
-1 R _ I
07 Q" = %, (3.8)
Thus
_ o1 R
du = TdsI + Y o Q. dg; (3.9)
i=1

Eq. (3.9) is a result known in classical thermodynamics as Gibbs equa-
tion and describes the associated reversible process, that causes the
same increment of internal energy du as the irreversible process
described by Eq. (3.4).

By elimination of du between (3.9) and (3.4), we obtain

TdsI = dh +

He~13
e}
t
—t
—
o)

.- QiR) dg, (3.10)

with Qi(k+1,...,n) = 0.

Thus the entropy of a mass element changes with time for two
reasons. First, because entropy flows into the volume element occupied
by this mass element, second because there is an entropy source due
to irreversible phenomena inside the volume element. This entropy
source is always a non-negative quantity.

Since the computational procedure needed for the derivation works

only on isolated systems, we now create such a system by the artifice
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of adjoining a large heat reservoir II to the physical system I.
Eq. (3.11) states that the entropy is an extensive property, i.e. the

entropy of the system is the sum of the entropies of the subsystems

dsyiqp = dsy + dsII (3.11)
and
_dh
dsII = -1 (3.12)

Eq. (3.12) states that the reservoir plays the role of a reversible
heat source, i.e. heat can be extracted from it without a change in its
temperature T. A combination of (3.12), (3.11), and (3.10) leads to

1

St+11 © oT . X5 95 (3.13)

ne~13

]

with Xi Qi - QiR. It turns out that the strength of the entropy
source, §I+II has a very simple appearance. It is a sum of n terms,
each being a product of a flux characterizing an irreversible process
and a quantity, called thermodynamic force.

In order to proceed from here we need to calculate the rate of
approach to equilibrium. This is only possible by arguments outside
the scope of continuum mechanics. The entropy source is explicitly re-
lated to the various irreversible processes that occur in the system

through a linear phenomenological relation between forces Xi and fluxes

éi called Onsager's theorem,

>
i
it~

bij(om,T)é,j (3.14)

Jj=1

This fundamental theorem states that when the flow dj’ corresponding
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to the irreversible process j, is influenced by the force Xi’ cor-
responding to the irreversible process i, then flow di is then also
influenced by the force Xj through the same influence coefficients,

(Q

? ). Eg. (3.14) can be rewritten as

QizQ

bij
R .
& by5(0,Tés (3.15)

It is shown in Appendix B that:

R _ 39
Q'l =P 3q1 1 k+1,...,n

The generalized force Q.R associated with g, through the Gibbs equa-
i i

tion (3.9), is derivable from the Gibbs free energy g (Qm, A T)

= 39__ m:]’z,'..’k

q -p
m an

fhe problem is thus reduced to the solution of two systems of equations,

P— R aj—_ -
9 o an m=1,2,...,k (3.16a)

89
e 30, * b

n
o

(Q.T)a, rs = k+l,...,n (3.16b)

A constitutive assumption on the dependence of the Gibbs free energy
on Qm, q,. and T has to be made. This is accomplished by a Taylor series
expansion around the equilibrium state such that,

- 1
Pg = Cp * Cpy Qm T dmn Q

Q +d.Q

m'n rm mqr

]
t 7 dps 9y G (3.17)

where Cps Cj and dij may depend on temperature, but not on 9. and Qm.

Note that there exists a distinct relation between summation index
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and physical dimension for these coefficients, i.e.

Coefficient Represents Summation Range
cp Energy
Cm Mechanical strain m=1,2,...,k
cn Thermodynamic force r = k+1, ,Nn
mn Mechanical compliance n,m=1,2,...,k
d Transforms hidden variables _ )
mm gy into mechanical strain ; - §+;"' ’E’
units 2Eree
drs Thermodynamic modulus r,s = k+tl,...,n

A further approximation of the free energy is found by an expansion
with respect to the uncontrollable variables a; only, i.e. we can be
far away from equilibrium with respect to Qm.

_ \ 1 5
Pg = pgp * € Qn * 3 drs 9 9 (3.18)

dg> c; and d;s can be functions of the independent variables Qm and T.

Eq. (3.18) must reduce to (3.17) under sufficiently small forces,

which leads to the relations

9% = St G O * 7 Oy O Oy (3.19)
c; = Ch. + drm Qm (3.20)
d;s = drs (3.21)

The various terms in equation (3.18) have the following physical

significance;
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09, An energy term that acts as a potential for the time inde-

pendent response. The dependence of Cn and dmn on stress

and temperature can be lumped together with CR into a

single nonlinearizing parameter.

$CLq. T (Cr + drm Qm)qr =809, % drm Qm q. This term is de-
fined by the energy associated with a simultaneous action
on the internal coordinates 9, and the controllable
variables Qm and 6.

. %-d;s 9, A This term is defined by the interaction energy
associated with the simultaneous action on internal co-
ordinates qy. and dg -

The above items which make up equation (3.18) are of particular interest
as they define the basic interaction mechanisms involved in three dif-
ferent nonlinearizing functions which appear in Schapery's final single
integral equation as developed subsequently.

Substitution of (3.18) into (3.16b) gives

dg

¢, +d (Q.Ta, + b (Q.T) gg— =0 (3.22)

In order to reduce (3.22) to a system of n-k differential equations

with constant coefficients, the further assumption is made that,
b (Q,T) = ap(Q,T)b (3.23)

in which brs are now defined as viscosities. This equation implies that
the flow is Newtonian but with stress and temperature dependent
viscosity. The implicit stress and temperature dependence can be made

explicit through a shift function aD(Qm,T). A Tot of experimental
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evidence exists for the special case where all viscosities have a
common shift factor independent of stress. In such cases 2 becomes
the familiar aT(T) shift factor found in polymer literature [28].

The following form for d;s is guided by (3.23),
' - R _
d (Q..T) = ag(Q ,T)d r,s = k+1,...,n (3.24)

where the constant symmetric "thermodynamic" modulus, dss, is now de-
fined at the reference temperature TR and Qm = 0 as indicated schematical-

ly in Fig. 3.1 and aG(Qm,T) is a shift function as defined below.
IR_ ] -—
drs = drs(O’TR) = drs(TR) (3.25)

It follows from Eq. (3.13), (3.14) and (3.23) that ap nonlinearizes

the entropy production,

. _ 1
SI+II = O_T aD(Qm,T) b.. (3.26)

ij 9 9

J
On the other hand ag nonlinearizes the third term in the Gibbs free
energy expansion (3.18) and therefore og is proportional to the above

quantities as indicated by,
1 R
o9 ~ > ag(Q ,T) d . a. q (3.27)
We cannot make an a-priori statement on the dependence of 3 with

stress, but the dependence of d;S(Q ) at a certain temperature T can

m
increase, decrease, or be independent of the force Qm (Fig. 3.2).

A constitutive assumption on ag has been developed by Schapery
[48] for the case where microcracking and flaw growth (in the opening
mode) are the dominant softening (damage) mechanisms. The reciprocal,

1/ag, is an increasing function of the g-th order Lebesque norm of

tensile stress, ¢', as specified by,
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rs

Qm

Fig. 3.1 Schematic Definition of " Thermodynamic Modulus".

R
drs ——<

:Qm

Fig. 3.2 Dependence of Thermodynamic Modulus, d g,
with the Generalized Force,Qm.
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—=1+ Jm G(¢) do (3.28)
¢ ]

-
1]

1
{fi o dg]q (3.29)

G(¢) is positive and reflects the statistical distribution of damage.

CO

The quantity, f G(¢)de¢, can be found from mechanical property tests

¢
wherein q is a positive constant.

Extensions of Eq. (3.29) have been made for multiaxial stress
conditions through incorporation of the first and second invariants of

the stress tensor (& and J2), while aging and/or rehealing is intro-

duced through a function M(t) such that,
1 1
S q 419
o' = J MY [Aye + AT 19 de (3.30)
0

Here, A1 and A2 are constants which satisfy the relation A2 =Mﬁ§ (1 -
A]) and when they are both positive there is a suppression of crack
growth by (8 < 0).

Due to the simplifications introduced in (3.23) and (3.24), a
system of n-k differential equations with constant coefficients
solvable for Qa1 2- -+ 29, NowW remains. These together with the k
algebraic equations obtained by substituting the free energy expression

(Eq. 3.18) into the k equations of (3.16a) are,

dq
s d&s 9 + ap b HE§'= - C. (n-k equations) (3.31)
39 ac;
Q. T -P s - 749 (k-equations) (3.32)
m an Qm r
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The former equations (3.32) can be rewritten with the reduced

time y as,
dq - ¢!
R S _ r
drs 4 * brs dv ag (3.33)
where,

dy = dt/a_ and a_ = ap | a;

o

The final system of equations can be explicitly written as,

BC"H] acl'(+2 ) ﬁ o o . r b r r agR B
aq, a0, EDN sy 9 ° N,
ac, ac, ac! 3
k+1 k+2 n gR
- B, S 0 0 ) 2
30, 0, 0, vz %2 °q,
ac! ac! ac! : 8
k+1 k+2 n 9
- — 0 0 0 q b
aﬁk aqk ;;Qk n qk '\Qk
= +
R R R 494 .
At ko1 Yketez o ki | Pkel ket Pkerkez 0 Piern v " el 0
aR dR R b b b Ve - 0
k+2,k+1 k+2 k42 k+2,n k+2,k+} k#¥2 k+2 7 k+2,n dv T Ske2 .
dq
R R R n .
Ldn.kﬂ dn,k4-2' dn.n bn,kﬂ n,k+2 %0 l' d L - ¢ 0
L P
(3.34)

Remark that the matrix partition on the upper Teft hand corner side
has a maximum dimension of 6 x (n-6) while the two lower partitions
are square matrices with dimensions (n-6) x (n-6) where n can be very
large, since this is the number of internal coordinates, needed for an

adequate description of the inelastic material phenomena.
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[t can be proven that a simultaneous diagonalization of d&s and

brs is always possible, which means physically that a transformed

space exists where the n-k internal deformation modes do not interact.

Thus,
b d r=:s
b, = { r } and d. = r for (3.35)
0 0 r#s
and
dqg !
r-__r
d, G, * b g = - o (3.36)
The solution of (3.36) is
q.= (1 - e'w/TT) L ii (3.37)
r dr aG

with T, = br/dr’ Eq. (3.37) has a fading-memory Kelvin-type kernel and
can thus be seen as the evolution equation for a Kelvin unit associated
with the physical process represented by - A point of interest here
is that there is no force Qr associated with the (n-k) functions q,
which describe the evolution of the internal system. It appears however
that these internal mechanisms are driven by forces - cr'./aG spiked

into the Kelvin unit through a force transfer mechanism, which was
mathematically given as and includes a thermodynamic force C, due to

temperature differences (¢ = T - TR).
el =c.+d (Q.T)Q (3.20)

The transfer function (Eq. 3.20) describes how forces Qm associated
with the observed coordinates (q],qz,...,qk) diffuse down into the

internal materjal structure where they drive the hidden coordinates
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This force transfer process is not necessarily linear and introduces
a third nonlinear function ém through the equation

R Q(Q,.T) (3.38)

C=B¢+dr‘mm

r r
where ¢ is T - TR and Br ijs the thermal modulus.

Note that functions d;s (which show up in the third term of the
free energy expansion (3.18)) and drm (which show up in the second term)
represent two completely different nonlinear-physical phenomena. This
reasoning leads to the two distinct functions ag and ém respectively.

Substitution of (3.37) into (3.31) gives

Oy = - ° %%ﬁ *+ ] ;%f-(1 - eV %;—Cr (3.39)

r oom s

and for time varying forces,

R i S (9 )1 SEH3)
AQn = - P m + g‘ a—m'd—; [_w(] - e r) & dy (3.40)
By substituting (3.38) in (3.40),
sap 30, | 4(0y/ag)
9 = - ° m + 5@; {J_w ASnp(w-w ) dz dt
t d(¢/ag)
+ J Aan(w—w') — dt (3.41)
0
where
(r) v/
ASnp = ; Anp (1 ) (3.42a)
ba, = ) argr) (1 - e-w/T‘") (3.42b)
r
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g
alr) - _m 1o (3.42¢)
P r
R
d" 8
wir) ”(}r . (3.424)
For uniax

tensile s

or

m
1]

with

have the

.go

ial loading where 9 is the tensile strain, €, and Q] is the

tress, o, Ea. (3.41) can be written as
agR 36] t d(dl/aﬁ)
-0 ~ac— + 3@ fo AD(I[)-U) ) _—_CTF-— dt (3.43)
t d(gzc)
95 DO o+ g fo aD(y-y') T dt (3.44
% 7
= -0 5 . (3.45a)
5Q
- 1
= W{ (3.45b)
=11 (3.45c¢)
a; o
= ap [ ag (3.45d)

way of summary, the nonlinear parameters 95> 915 92 and a,
following physical significance.

Nonlinearizes the elastic response and can in principle
increase or decrease with stress. The former is described
as a softening phenomenon while the latter is considered

to be a hardening phenomenon.

37



* 9y Experimental results indicate that 9 is an increasing
function of stress which requires 61 to be a monotonically
increasing function of Q] as seen in Fig. 3.3. This means
that the stresses that are transferred to the microstructure
may have a higher intensity than the external force. Note
also that when the material is Tinear viscoelastic,
g9y = 1 and Q] is a linear function of Q-

A
Q ¢

1

Nonlinear
viscoelastic

Linear
viscoelastic

— Q

1

Fig. 3.3 Dependence of Generalized Force Q] or Q]

* 9 This factor contains two nonlinearizing functions, é] and
ag- It can be seen as the ratio of the force that could
be spiked into Kelvin-type microunits taking into account
that the moduli of the springs in these units change by a
factor a;. This change can be stiffening (aG > 1) or

softening (aG < 1).

Q
Qv o]
[ I fw)

Represents a stress and temperature dependent shift

along the time axis. Here aD(Qm,T) decreases with
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temperature and with increases in stress-induced free

volume. Also, aG(Qm,T) decreases with temperature

but an increase in stress would produce more shift.
The Kelvin type kernel 4D in Eq. (3.44) can be approximated by a

power law which was proved to be valid under restricted conditions in

Chapter 2,

ab(y-v') = D.(1 - e~ (¥-0")/7r (3.46)
or r

8D(p-v') = c(p-p*)" (3.47)

With this approximation Eq. (3.44) becomes,

t n d(QZG)
€=g,0,0+g J Cly=p') —g— dr (3.48)
0
For a creep test ¢ = o H(t), eq. (3.48) reduces to,
£ 0
€ =g, DO oy *97 9, C {S—J % (3.49)
a

The experimental procedure that should be followed to obtain the
three linear parameters (DO,C,n) and the four nonltinearizing
parameters (90,91,92,a0) has been described in detail by Lou and
Schapery [49] on the basis of a graphical shifting procedure based on
creep and creep-recovery data. A computerized procedure that avoids
tedious graphical shifting was developed during the current research
effort by Bertolotti et al. [50].

The general equation (3.44) can be simplified to model specific
thermorheological complex materials. For sufficiently low stresses,

- Qm = Qm = g which means that 9y = 1 and 9o = 1/aG. Also, ag and ap
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are only functions of temperature (aD/aG = aT). Eq. (3.44) now reduces

to
t

€=g,0 0+ j AD(p-y") g? ["—] dr (3.50)

0]

where log y = log t - log ar. For o = o, H(t) this becomes

D; = DI(T) + 8D(vw)/ag(T) (3.51)
with DT =€ | % and DI(T) = gO(T) Do' Thus,

log (DT - Dy) = log aD - log ag (3.52)

Eq. (3.52) shows that master curves can be obtained by rigid horizontal
|1og a;| and vertical |log ag| shifts.

Eq. (3.52) suggest that the machinery needed for accelerated
characterization can only be effective when the vertical shift aG(T)
can be separated from the horizontal shift aT(T). This is only
possible with additional transient temperature tests as suggested
from Eq. (3.41). Some actual data were obtained by Schapery and Martin
[51] and very recently by Weitsman [52]. In the former, a theoretical
form for aG(T) which applies below and in the neighborhood of the
glass transition temperature Tg was given as,

- v en (1 + 2)
exp [vo/(1 +2)] - 1

E (3.53)

where y = aH/RTp and z = (T - TR)/TR. Eq. (3.53) is based on kinetic
theory wherein aH is the constant activation enthalpy for hole forma-
tion. Simple forms for a on the basis of rubber elasticity are well

established at and above the Tg.
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The results discussed herein have been applied to composite

materials by Schapery and his co-workers [49,53].
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Chapter 4
DELAYED FAILURE

4.1 Introduction

Failure is most often treated as a separate issue from the deter-
mination of modulus properties of materials. In fact, most failure laws
are derived empirically from observations related to a catastrophic
event such as yielding or rupture. As a result, a great deal of
testing and data analysis is necessary to establish an appropriate
failure Taw for a material. On the other hand, modulus or constitutive
laws are derived by more rational means of relating deformations to the
forces which produce them. For this reason, often much less testing is
necessary to define a constitutive law for a material especially if
deformations do not depart from the elastic or reversable deformation
range for a material.

Failure, however it is defined, should be a part of a complete
constitutive description of a material. In other words, the key to
dealing effectively with failure lies in treating its behavior as a
termination of a nonlinear viscoelastic process. Perhaps, for this
reason, a number of investigators have suggested that modulus and
strength laws should be related to each other for viscoelastic materials
[4,38,54].

The concept of distortional energy as a measure for the criticality
of a given state of stress in an elastic material (von Mises criterion)
cannot be carried over directly as a governing criterion for failure

in viscoelastic materials, mainly because viscoelastic deformation
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involves dissipative mechanisms. Thus at any time the energy balance

can be written as:

Total deformation = Free (stored) + Dissipated
energy energy energy

In case of a perfectly elastic/viscoplastic material, inelastic
deformations occur only after a limiting value of stress has been
exceeded. Owing to this assumption, such a yield criterion does not
differ from the known criteria of the inviscid plasticity theory. The
most appropriate form on the latter is often based on the energy approach
(Huber-Henkey-von Mises) in which a critical value of the conserved
(accumulated) distortion energy defines the transition from the elastic
to the inelastic state.

In case of an elastic-viscoplastic material, the rheological
response occurs from the beginning of the loading process. Under such
conditions it seems appropriate to take into account the accumulated
energy WE’ as well as the dissipated power QD where both quantities are
regarded to be responsible for the behavior of the viscoelastic material.
The yield condition is then given by a function with two arguments

such that
where the specific form is based on experimental evidence. The simplest

possible form is the linear combination

.2
g Wg + &p CWp = k

with
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With &y = 0 we assume thHat the dissipated energy has no effect on
the yield criterion. This corresponds to Reiner and Weissenberg's
point of view. Reiner and Weissenberg [55] suggest that the energy
storage capacity is responsible for the transition from viscoelastic
response to yield in ductile materials or fracture in brittle ones.
They assume that a threshold value of the distortional free energy,
called the resilience of the material, is the governing quantity. It
is clear that the Reiner-Weissenberg criterion applied to a material
with zero dissipation (elastic material) becomes identical to the von
Mises criterion. When applied to a viscoelastic material, however, we
have to keep track of the free energy which is history dependent. If
the mechanisms through which total deformation energy is transformed
into dissipated energy are so activated that no free energy can be
accumulated, there is practically no limit to the amount of deformation
energy which can be applied without impairing the strength. That is,
forces up to a certain magnitude can be applied for any length of time
without leading to rupture. If it turns out that the material cannot
accommodate this energy redistribution fast enough then the material
will store energy initially but after a period of time failure will
occur. The failure process is therefore delayed which limits the 1ife
of a given structure to a finite value. The instant of yielding is
thus clearly dependent on the final outcome of a conjection between
deviatoric free energy and dissipated energy. Thus the effect of the
strain history on the delayed yielding phenomenon follows from this
model in a natural way. In this respect, it should be noted that both

Naghdi and Murch [56] and Crochet [57] have used a modified von Mises
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criteria for viscoelastic materials by assuming, ab initio, that the
radius of the yield surface Y does depend upon the strain history,
through a Euclidian metric, x, in strain space. Their formulation

can be expressed as,

fegss-¥=0 , Y=Y (4.1)

x = LleYy - o5 el - €512 (4.2)

where x represents the distance between the purely elastic strain
response egj and the strain state corresponding to yield e¥j as is

geometrically shown in Fig. 4.1. The functional relationship between

Deformation Trajectory

Fig. 4.1 Geometric interpretation of the Euclidian metric x (as de-
fined by Crochet).

Y and x for one-dimensional behavior was given by Crochet [57] to be,
Y(t) = A + Be"™X (4.3)

where A, B and C are material parameters. The radius of the yield sur-

face is thus a continuously decreasing function of the "distance" between
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two states of strain (eg. and €7.).
1] 1J

An extension of the Naghdi and Murch-Crochet approach to fiber
reinforced material systems is possible when we can relate the stress
in the matrix phase {o}m to the applied external stress {o}. The

introduction of stress concentration factors, which relate both these

stress-fields is suggested by Hill [58]

(¢} =B {0} (4.4)

and equation (4.1) becomes

2

f = {o}T[Bm]{o} -y2 - (4.5)

in which Y is the tension yield stress in the matrix, as defined by
eq. (4.3). It should be noted, however, that eq. (4.5) only describes
initial yielding. The incorporation of a hardening rule, together with
a flow rule should be considered in order to model accurately the
phenomena after initial yielding up to final fracture.

The extension of the Reiner-Weissenberg approach to a general
anisotropic material system can be done quite easily when we use the

general definition of distortional energy, as defined by von Mises [59]

-1 2 2 2
wdist_Z (S” cx+522 oy+ +S66 TZ) +S]2 oxoy+ ..
+ 514 Iy Tx + ... F 566 rytz

2
) 1_[°x(511 tsgp tsyg) bl Tsgy *osgy oSea)]
2 Sy 5y Ts33 + 25y + spg F 55y)

+s + s

(4.6)

The advantage of this approach is that the onset of yielding or failure

is controlled by only one material constant W while the former

dist’
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approach (Naghdi et al.) introduces at least three parameters. It has
been argued by Pagano [60], on the other hand, that the distortional
energy, as defined by von Mises, has only physical significance in the
special case of an isotropic material. The full implications of
Pagano's comments are unknown at the present time. A possible alter-
native way to extend the Reiner-Weissenberg criterion, would be to
evaluate the free energy in the matrix phase. This could also be done

through Hill's concentration factors.

The following is a brief review of the Reiner-Weissenberg criterion

which follows Briller's [61-68] extensive investigation along these

lines.

4.1.1 Free Energy Accumulation for a Linear Kelvin Chain in Creep

For a single Kelvin unit in series with a spring as shown in

Fig. 4.2,

n, €, (1)

€ (1) [ Yo

0

Fig. 4.2 Linear Kelvin model
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g
where
e =0 ¢
g 90 (4.8)
e] = D] 00[.‘ - exp ('t/T])]
or
e(t) = [Dg + D](1 - exp (—t/T])]oo (4.9)
The stress, o_, in the spring with compliance D, is,
S 1
€ .
o, = 5, =0, [T - exp (-t/7q)] (4.10)
The stress, o4 in the dashpot is then,
04 = 9, EXP (-t/T]) (4.11)

A physical interpretation of free energy would be the energy stored in

the springs Dg and D],

, D t
Wsprings = %o ?g ¥ fo Is & dt
D D
2 2 0 2
=0y 5=t og 5 [1 - exp (-t/7;)] (4.12)

In the same way we can calculate the energy dissipation in the dashpot,

"dashpot * Jo 94 g It
2 Dy
= o, 2—-[1 - exp (-2t/r])] (4.13)

The total energy in the three parameter system is given by,
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total ~ wspm‘ngs * wdashpot

D
Ug ]:2’9‘ t D] (1 - exp ('t/T])} (4.]4)

The extension of Eq. (4.12), (4.13) and (4.14) to a n-element Kelvin

unit with a free spring is straightforward.

2 0g N D 2
Wsprings = oo 5 + iz] 7 (1 - exp (-t/‘r_i)) (4.]5)
2 N D
Wdashpots ~ %o iz] 7 (1 - exp (-2t/7y)) (4.16)
2 |0, 1
Weotal = % |2 7 iZ] D; (1 - exp (-t/1;)) (4.17)

By taking the limits for t - « of these equations, we obtain

e [Py, 12
Tim W__ . =g + E (4.18)
foroo springs o |2 5 2

- 2 N D1
1M Wy shpots = % .Z 7 (4.19)
too i=1

| AL
UmWeotal T % |70 7 L D (4.20)

Thus half the work done by the external forces goes to increase the

free energy while the other half is dissipated.

4.1.2 Power Law Approximations for Free Energy

The free energy expression in the form of Eq. (4.15) forces us to

identify the 2N material constants Di and T This can be avoided
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using a power law approximation as follows,

W D N
_Eggél - §9 = 7 0. (1 - exp (-t/7;)) = Dt" (4.21)
o] i=1
0
and
g hpots _ 1 N ! n
352 0 - 5 z D] ('l - exp (-2t/11)) = 5 D(2t) (422)
o] i=]

This allows us to obtain the following simple expression for the free

energy
D i
_21g n_1 n
Usprings = %o {2 +D(t7 -5 (2t)) (4.23)
_ W
“failure = D o n (4.24)

The nonlinearizing parameters introduced in Eq. (4.24) lead to

9Failure =

. - - (4.25)
Tt 1 (2t
9o 75 * 999, © Ug] "7 [E‘] l

0)

The ability of Eqs. (4.15) and (4.25) to model experimental data is
checked in Chapter 7.

Note on the Zhurkov Criterion

The existence of a strength 1imit as a real physical characteris-
tic of a material was seriously doubted by Zhurkov [69] due to experi-
mental evidence that solids may also fracture at stresses below the
strength Timit. He set up systematic and careful measurements of the
Tifetime of solids under a constant tensile stress. Both tensile

stress and temperature were widely varied among experiments. More than
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a hundred substances of all principal types of solids were investigated--
metals, alloys, glasses, polymers, crystals. It turned out that the

time to fracture possessed a surprisingly uniform dependence when
suitably expressed in terms of the stress (o) and temperature (T).
Analytical treatment of this vast amount of data led him to the uni-
versal formula for the temperature and stress dependence of lifetime,

1, (except for very small stresses),
T = T, exp [(U0 - va)/kT] (4.26)

where k is the Boltzmann constant, % is a constant on the order of
the molecular oscillation period of 10']3 sec., U0 is a constant for
each substance regardless of its structure and treatment, and y depends
on the previous treatment of the substance and varies over a wide
range for different materials.

Equation (4.26) can be formally incorporated into a continuum

mechanics analysis in a modified form to account for time varying

stresses and/or temperatures,

t dt i
JO T exp (U = yo (e /kT(e)] = ! (4.27)

Roylance and Wang [70] used Eq. (4.27) in a finite element code where
the current value of the above integral was computed at each node. The
time and location of fracture was determined when the integral value
reached unity at any node.

Williams and his collaborators [71,72] disagree with Eq. (4.26).

They argue that the rupture process is much more detailed than re-

flected by this equation. Their experiments on stress history induced
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rupture led them to the conclusion that "Zhurkov‘s impressive findings
appear to be the somewhat fortuitous result of a particular test
method."

When Eq. (4.27) is applied to such highly heterogeneous material
systems as composites, the question of whether or nct fracture can be
regarded as a thermally activated process of damage accumulation is far
from settled. It is also obvious that Tos UO and vy lose their physical
meaning. Regel et al. [73] suggest a life of mixture type predictions

for these variables.
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Chapter 5
RESIN CHARACTERIZATION: EXPERIMENTAL RESULTS
AND DISCUSSION

5.1 1Introduction

In order to understand experimentally observed discolorations of
the Fiberite 934 neat resin due to postcuring and some anomalities of
the creep response in the temperature region, 200-250°F (93.3-121°C),
it was decided to study details of the relationship between resin
chemistry, various postcuring procedures, and mechanical properties.
General resin information is summarized in 5.2 while experiments and
analysis related to the mechanical characterization of the resin are

reported in 5.3.

5.2 General Resin Information

5.2.1 Resin Chemistry and Curing Procedure

Many composites, especially carbon-fiber based composites, utilize
an epoxy resin matrix. From the hundreds of different epoxies that
are available, only a small number (= 10) are used for composites. The
epoxy of interest in this study is a polyfunctional epoxide based on
the tetraglycidyl derivative of methylenedianiline (TGDDM), available
from Ciba-Geigy under the tradename MY 720. This epoxide, which is now
the basis of virtually all aerospace matrices for carbon fibre both
here and abroad, is shown in Fig. 5.1a. The Ciba-Geigy Eporal hardener
used in conjunction with MY 720 is 4,4' diaminodiphenyl sulfane (DDS)

Ciba-Geigy Eporal and is shown in Fig. 5.1b.
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a) Tetraglycidyl 4,4' diaminodiphenyl methane epoxy TGDDM

b) 4,4' diaminodiphenyl sulfane (DDS)
Fig. 5.1 Chemical Structure for Epoxy Resins

Because the DDS cure is sluggish, even at moderately high tempera-
tures, a boron trifluoride catalyst is used (BF3) in order to produce
a more manageable cure cycle. Despite the fact that these ijonic
curing agents often have poor humidity resistance, they are used as a
compromise between mechanical properties and manufacturing convenience.
The final epoxy network structure depends not only on the chemistry of
the system, but also on the initial epoxy versus curing agent ratio
and cure conditions. At the beginning of this research program, we ob-
tained three different panels manufactured with three different curing

procedures. Cure details are given in Appendix A.
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It is usually assumed that the properties of the cured resin in
a composite are the same as those of the bulk material. However,
McGullough [74], Hancox [75] and Yang, Carlsson and Sternstein [76]
suggest otherwise. The reasons mentioned by these authors are:

« The structure in a small volume of resin may be more ordered
than in the bulk material, because the exotherm in the
composite will be limited to the overall curing temperature
by the presence of good conducting fibers.

« The small distance between the fibers may provide steric
hindrance and inhibit epoxy-amine cross-link reactions
during the latter stages of cure and 1imit the overall
achievable cross-link density.

+ Due to the large amount of surface area of the fibers,
adsorption of epoxy segments at the fiber surface would
cause a tighter network.

+ A state of negative hydrostatic stress could be imposed on
the epoxy due to the fibers, restricting the volume expan-
sion of epoxy during heating.

No convincing evidence has been produced yet (to this author's knowledge)
that one or a combination of these mechanisms leads to the resin in the
composite that is thermorheologically different from the neat resin.

As a polymer is cooled at a finite rate through the glass transi-

tion into the glassy state, a sudden increase in modulus parallels a
rapid decrease in molecular mobility. The process of molecular re-
arrangements operates on its own internal time scale. Equilibrium can
only be achieved if the cooling rate is so slow that the molecular re-
arrangements are given sufficient time to operate. If the cooling rate
is too fast, these rearrangements are essentially quenched into a non-

equilibrium state, i.e., a state characterized by excess entropy,

enthalpy and volume. This gives rise to a driving force towards
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equilibrium, i.e., the system densifies till the free volume, excess
entropy and excess enthalpy all reach zero. This process can operate
on a scale of days, months or years and is known as aging.

Experimental equilibrium has been unexpectedly difficult to
achieve. Spontaneous changes in the properties of glassy polymers have
been observed long after vitrification.

Excess entropy cannot be measured directly but excess enthalpy
is easily measured by calorimetric methods (DSC). The latter show a
decrease in enthalpy with time in a similar fashion as the time dependent
mechanical properties as reported by Petrie [77,78]. As indicated in
Fig. 5.2, she did not find a one to one corresporndence to specific
volume behavior.

In our experiments, we tried to achieve this equilibrium state by
a postcuring of 350°F = 10°F (176°C=+5°C) for 4 hr + 15 min. followed
by a slow, controlled cooldown at a rate of 5°F/hr (2.5°C/hr)(see Fig.
5.3).

5.2.2 Thermal Transitions in the Epoxy System

Two distinct transition temperatures at 140°F (60°C) and 356°F
(180°C) respectively have been identified by Yeow and Brinson [4] dur-
ing their experiments on T300/934 graphite epoxy. The latter was the
primary glass-transition temperature, Tg, while the former was a
secondary transition. Their measurements were based on detecting dis-
continuities in the coefficient of thermal expansion which were measured

using electrical strain gages.
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Annealing Time at 92°C. Gi and A Were Measured at 0.6 Hz.
Petrie [77,78].

w 400 / 200
o o
] o)
© 300 ©
~ Prescribed Cycle ~
g )]
=~ 200 ~ 100 N
2 Natural Decay 2
S o
o 100+ W d)
3 3
o 0 1 LA ®
= 0 5 10 -
Time ( hr)

Fig. 5.3 Postcure Cycle Used for 934-Resin and for T300/934 Composite.
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Keenan, Seferis and Quilivan [79] used oscillating mechanical
fields to characterize the dynamic mechanical behavior of an epoxy
system. Their results are shown in Fig. 5.4 with an w-transition
centered around 212°F (100°C) and an a-transition at 464°F (240°C).
However, these definitions of Tg suffer from the fact that they are
based on dynamic mechanical quantities which are quite sensitive to the
frequency of experimentation as well as the sample heating rate.* C(on-
sequently, the Tg values defined from dynamic mechanical experiments

are invariably higher than those obtained by a more conventional

method, i.e., dilatomeric experiments.
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a) Storage Modulus b) Loss Modulus

Fig. 5.4 Storage Modulus and Loss Modulus after Keenan et al. [79].

*The conclusions obtained by Keenan et al. can be carried over
to the 934 resin, since this particular member of the TGDDM-DDS
epoxy family has the same basic network. Any difference should be
one of degree, not in kind.
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5.2.3 Environmental Stability

1) Thermal Stability

Different IR analysis of an epoxy postcured above 350°F (180°C)
reveals an additional broad sorption band in the 5.5 - 14.3 u region
according to Morgan [80]. The intensity of this sorption increased with
exposure time and increasing temperature. A strong IR sorption at
5.85 u appears during the initial stages of the degradation process,
which indicates the formation of carbonyl groups. Such groups should
result from oxidation of unreacted epoxide rings to form a-hydroxy
alolehyde and carboxylic acid [81].

Degradation causes a discoloration of the 934 epoxy as indicated
in Fig. 5.5 and may indicate a significant change of behavior in the
glassy region due to postcuring. We observed that heating above 356°F
(18b°C) for 36 hr seemed to cause embrittlement, i.e. decreased tensile
strength and ultimate elongation accompanied by a slightly increased
modulus (Fig. 5.6). In addition, an increased moisture absorption
rate (Fig. 5.7) was found. This is most likely due to a thermal oxi-
dation phenomenon. Figure 5.8 shows the storage modulus E' and the

damping ratio § for the s